SI Base and Derived Units Commonly Used in Chemistry | Table 2.1 (pg. 33) | SI Base Units | |--------------------------|------------------------| | Quantity | Base Unit | | Time | second (s) | | Length | meter (m) | | Mass | kilogram (kg) | | Temperature | kelvin (K) | | Amount (count, quantity) | mole (mol) | | of a substance | | | Electric current | ampere (A) | | Luminous intensity | candela (cd) | | This table is not in your book | SI Derived Units | |--------------------------------|---| | Quantity | Derived Unit | | Area | square meter (m ²) | | Volume | cubic meter (m ³) | | Force | newton, $(\mathbf{N} = \mathrm{kg \cdot m/s}^2)$ | | Pressure | pascal, ($\mathbf{Pa} = \mathrm{kg/m \cdot s}^2$) | | Energy | joule, $(\mathbf{J} = \mathbf{N} \cdot \mathbf{m} = \mathbf{kg} \cdot \mathbf{m}^2 / \mathbf{s}^2)$ | | Power | watt ($\mathbf{W} = J/s = kg \cdot m^2/s^3$) | | Voltage | $volt (\mathbf{V} = J/A \cdot s = N \cdot m/A \cdot s)$ | | Frequency | hertz ($\mathbf{Hz} = \text{cycles/s} = \text{s}^{-1}$) | | Electric charge | coulomb ($\mathbf{C} = \mathbf{A} \cdot \mathbf{s}$) |