SI Base and Derived Units Commonly Used in Chemistry

Table 2.1 (pg. 33)	SI Base Units
Quantity	Base Unit
Time	second (s)
Length	meter (m)
Mass	kilogram (kg)
Temperature	kelvin (K)
Amount (count, quantity)	mole (mol)
of a substance	
Electric current	ampere (A)
Luminous intensity	candela (cd)

This table is not in your book	SI Derived Units
Quantity	Derived Unit
Area	square meter (m ²)
Volume	cubic meter (m ³)
Force	newton, $(\mathbf{N} = \mathrm{kg \cdot m/s}^2)$
Pressure	pascal, ($\mathbf{Pa} = \mathrm{kg/m \cdot s}^2$)
Energy	joule, $(\mathbf{J} = \mathbf{N} \cdot \mathbf{m} = \mathbf{kg} \cdot \mathbf{m}^2 / \mathbf{s}^2)$
Power	watt ($\mathbf{W} = J/s = kg \cdot m^2/s^3$)
Voltage	$volt (\mathbf{V} = J/A \cdot s = N \cdot m/A \cdot s)$
Frequency	hertz ($\mathbf{Hz} = \text{cycles/s} = \text{s}^{-1}$)
Electric charge	coulomb ($\mathbf{C} = \mathbf{A} \cdot \mathbf{s}$)